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Basic de�nitions

We say (X ,T ) is a topological dynamical system (TDS) if X is a
compact metrizable space (with compatible metric d) and
T : X ! X is a homeomorphism.

Let Homeo(X ) = fT : (X ,T ) is a TDSg the space of all systems on
X .

We equip Homeo(X ) with the sup-metric, that is
ds (T1,T2) = supfd(T1x ,T2x) : x 2 Xg.
This makes Homeo(X ) a Polish space.
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Topological conjugacy

Two TDSs (X1,T1) and (X2,T2) are conjugated if there exists a
homeomorphism f : X1 ! X2 such that f � T1 = T2 � f .

In this case we write (X1,T1) � (X2,T2).
Let

R�(X ) = f(T1,T2) : (X ,T1) � (X ,T2)g � Homeo(X )�Homeo(X )

the equivalence relation generated by conjugacy.
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Cantor systems

Let K be a Cantor space. A TDS (K ,T ) is called a Cantor system.

Theorem (Camerlo-Gao �01) R�(K ) is Borel bi-reducible to the
equivalence relation generated by isomorphisms of countable graphs.

This equivalence relation is a maximal S∞-action.

In particular this implies that R�(K ) is a complete analytic set.
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Borel reductions

When dealing with equivalence relations there are two ways to de�ne
Borel reductions.

Let R � P � P and R 0 � P 0 � P 0 be equivalence relations on Polish
spaces .

We say R is (Borel) reducible to R 0 (R �2B R 0) if there exists a
Borel function f : P ! P 0 such that (x , y) 2 R if and only if
(f (x), f (y)) 2 R 0.
We say R is reducible to R 0 as a set (R �B R 0) if there exists a
Borel function f : P � P ! P 0 � P 0 such that (x , y) 2 R if and only
if f (x , y) 2 R 0.
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Minimal

Question Does the complexity of R�(K ) change if we restrict to
minimal systems?

Question (Gao) Is Rmin
� (K ) a Borel subset ?

A TDS is minimal if for every closed subset A � X such that
T (A) � A we have that A = ∅ or A = X .

Why minimal systems?
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Minimal

Cantor minimal systems have more structure than general Cantor
systems.

For example Cantor minimal systems can be represented by
transformations on Bratteli diagrams.
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The complexity of pointed Cantor minimal systems is well understood.

We say (X ,T , x) is a pointed TDS if (X ,T ) is a TDS and x 2 X .
(X1,T1, x1) and (X2,T2, x2) are conjugated if there exists a
homeomorphism f : X1 ! X2 such that f � T1 = T2 � f and
f (x1) = x2.

Theorem (Kaya �15) The equivalence relation generated by
conjugacy of pointed Cantor minimal systems is bi-reducible to =+.

Furthermore =+is reducible to Rmin
� (K ).

For fxng, fyng 2 RN, we write fxng =+ fyng if
fxn : n 2 Ng =fxn : n 2 Ng.
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Equicontinuous systems

Equicontinuous minimal systems can be classi�ed.

A TDS is equicontinuous if for every ε > 0 there exist δ > 0 such
that if d(x , y) � δ then d(T nx ,T ny) � ε.

Let C (X ) = ff : X ! C : f is continuousg.
Given a TDS we de�ne the topological Koopman operator
UT : C (X )! C (X ) as UT (f ) = f � T .
Theorem (Halmos - von Neumann) Two minimal equicontinuous
systems are conjugated if and only if the eigenvalues of topological
Koopman operator are the same.
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Discrete spectrum

Theorem (Foreman - Louveau �00) Isomorphism of discrete spectrum
ergodic transformations is bi-reducible to =+.

This result uses the measurable version of the Halmos - von Neumann
the eigenvalues of the operator on L2(X , µ).
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Cantor minimal systems

Let Rmin
� (X ) = f(T1,T2) : (X ,T1) � (X ,T2) and (X ,T1) is

minimal g.

Going back to the question about conjugacy on minimal systems.

Theorem (Deka et al) Rmin
� (K ) is a complete analytic subset (and

hence not Borel).

Corollary Rmin
� (K ) is bi-reducible to R�(K ) as a set.

We still do not know if Rmin
� (K ) is a maximal S∞�action.

Another candidate is the isomorphism of countable abelian torsion
groups, which is complete analytic and determined by an S∞-action,
but it is not maximal.

Before mentioning some tools...
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hence not Borel).

Corollary Rmin
� (K ) is bi-reducible to R�(K ) as a set.

We still do not know if Rmin
� (K ) is a maximal S∞�action.

Another candidate is the isomorphism of countable abelian torsion
groups, which is complete analytic and determined by an S∞-action,
but it is not maximal.

Before mentioning some tools...
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Isomorphism of measure-preserving transformations

Theorem (Hjorth �01) The isomorphism equivalence relation for
measure preserving transformations is strictly more complicated than
isomorphism for countable graphs.

In particular this implies that isomorphism for MPT is more
complicated than conjugacy for Cantor systems.

We say an invariant measure is ergodic if every invariant Borel subset
has null or complete measure.

Hjorth�s proof uses nonergodic transformations in an essential way.

Theorem (Foreman, Rudolph, Weiss �11) The isomorphism
equivalence relation for ergodic measure preserving transformations is
complete analytic.
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Trees

One of the tools for the proof of FRW is constructing a Borel function

f : Trees ! fminimal uniquely ergodic subshiftsg

so that

t 2 Trees is ill founded if and only if the unique invariant measure of
f (t) is

isomorphic to the unique invariant measure of the subshift which is
the reverse of f (t) (using σ�1).

One uses the fact that the collection of ill-founded trees is a complete
analytic set.
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The FRW approach has �exibility; it has been used in di¤erent set
ups like Kakutani equivalence and K-systems (Gerber-Kunde).

Nonetheless, the technique has not been used for topological
dynamics.

Take an ill founded tree t. In general f (t) is not (top.) conjugated
the inverse of f (t).

If one was able to "�x" this then we would conclude that the
conjugacy relation for subshifts is not Borel.

Actually the conjugacy between any subshifts is given by
(�nite-window) sliding-blockcodes, so the relation of conjugacy of
subshifts is countable and hence Borel. Hence, this approach is
impossible
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Cantor subshifts

We add a new dimension to the construction.

Let Kσ(K ) = fX � KZ : X is closed and shift invariantg the space
of Cantor subshifts.

We equipp this space with the Vietoris topology (Hausdor¤ metric).

We construct a Borel function

f : Trees ! fminimal Cantor subshiftsg

such that t 2 Trees is ill founded if and only if (f (t), σ) is conjugated
to (f (t), σ�1).

We construct the Cantor subshifts step by step by enumerating the
tree.

At each step n we set the language of length l(n) of the �rst m levels
of the Cantor subshift (where m is the depth of the vertex n).
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Finally we prove that the conjugacy relation of (perfect) Cantor
minimal subshifts is bi-reducible to the conjugacy relation of Cantor
minimal systems.

Every Cantor system is conjugated to a Cantor subshift.

Not every Cantor subshift is a Cantor system, but every Cantor
subshift without isolated points is a Cantor system.
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Flip conjugacy

Question (Gao) Is the relation given by �ip-conjugacy of Cantor
minimal systems Borel?

We say (X ,T ) and (X2,T2) are �ip-conjugated if
(X ,T ) � (X2,T2) or (X ,T ) � (X2,T�12 ).

With our previous approach we cannot obtain the result for �ip
conjugacy because a system is always �ip-conjugated to its inverse.
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What is needed is a Borel reduction

f : Trees ! fminimal Cantor subshiftsg2

with f (t) = (f1(t), f2(t))

where:

(f1(t), σ) is never conjugated to (f2(t), σ�1), and

t 2 Trees is ill founded if and only if (f2(t), σ) is conjugated to
(f2(t), σ).

Theorem (Deka et al) The �ip conjugacy relation for Cantor
minimal systems is complete analytic.
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Groups

A group G is simple if the only normal subgroups are fidg and G .

Finite simple groups can be classi�ed:

Theorem (Robert �23) The relation obtained from isomorphisms of
locally �nite simple groups arises from a maximal S∞-action.
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Groups

We de�ne the topological full group of a TDS (X ,T ), [[T ]] as the
subgroup of points g 2 Homeo(X ) for which there exists a
continuous function fg : X ! Z such that g(x) = T fg (x )(x).

Let (K ,T ) be a Cantor minimal system.

[[T ]] is countable.

[[T ]] amenable (Juschenko-Monod �12).

[[T ]]0, the commutator of [[T ]] is simple (Matui �06,
Bezuglyi-Medynets �07)
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[[T ]]0, the commutator of [[T ]] is simple (Matui �06,
Bezuglyi-Medynets �07)
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Classi�cation

Let (K ,T ) and (K ,T2) be Cantor minimal systems.

Theorem (Giordano-Putnam-Skau �99) (K ,T1) ��ip (K ,T2) if and
only if [[T1]] is isomorphic to [[T2]]

Theorem (Bezuglyi-Medynets �07) (K ,T1) ��ip (K ,T2) if and only
if [[T1]]0 is isomorphic to [[T2]]0 .
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Proposition

By construction a Borel reduction to the commutator of the full
group we obtain the following result.

Proposition (Deka et al) The relation obtain by �ip-cojugacy of
Cantor minimal systems reduces to the relation of isomorphism of
countable simple amenable groups.
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Dzieki!
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