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Basic definitions

e We say (X, T) is a topological dynamical system (TDS) if X is a
compact metrizable space (with compatible metric d) and
T : X — X is a homeomorphism.
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Basic definitions

e We say (X, T) is a topological dynamical system (TDS) if X is a
compact metrizable space (with compatible metric d) and
T : X — X is a homeomorphism.

@ Let Homeo(X) = {T : (X, T) is a TDS} the space of all systems on
X.

e We equip Homeo(X) with the sup-metric, that is
ds(T1, T2) = sup{d(T1ix, Tox) : x € X}.
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Basic definitions

e We say (X, T) is a topological dynamical system (TDS) if X is a
compact metrizable space (with compatible metric d) and
T : X — X is a homeomorphism.

@ Let Homeo(X) = {T : (X, T) is a TDS} the space of all systems on
X.

e We equip Homeo(X) with the sup-metric, that is
ds(T1, T2) = sup{d(T1ix, Tox) : x € X}.
@ This makes Homeo(X) a Polish space.
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Topological conjugacy

@ Two TDSs (X1, T1) and (Xz, T2) are conjugated if there exists a
homeomorphism f : X; — X, such that fo T3 = T o f.
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Topological conjugacy

@ Two TDSs (X1, T1) and (Xz, T2) are conjugated if there exists a
homeomorphism f : X; — X, such that fo T3 = T o f.

@ In this case we write (X1, T1) = (Xz, T2).
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Topological conjugacy

@ Two TDSs (X1, T1) and (Xz, T2) are conjugated if there exists a
homeomorphism f : X; — X, such that fo T3 = T o f.

@ In this case we write (X1, T1) = (Xz, T2).
o Let

R(X)={(T1, Ta) : (X, T1) = (X, T2)} C Homeo(X) x Homeo(X)

the equivalence relation generated by conjugacy.
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@ Let K be a Cantor space. A TDS (K, T) is called a Cantor system.
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Cantor systems

@ Let K be a Cantor space. A TDS (K, T) is called a Cantor system.

@ Theorem (Camerlo-Gao '01) R~ (K) is Borel bi-reducible to the
equivalence relation generated by isomorphisms of countable graphs.
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Cantor systems

@ Let K be a Cantor space. A TDS (K, T) is called a Cantor system.

@ Theorem (Camerlo-Gao '01) R~ (K) is Borel bi-reducible to the
equivalence relation generated by isomorphisms of countable graphs.

@ This equivalence relation is a maximal Ss-action.
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Cantor systems

@ Let K be a Cantor space. A TDS (K, T) is called a Cantor system.

@ Theorem (Camerlo-Gao '01) R~ (K) is Borel bi-reducible to the
equivalence relation generated by isomorphisms of countable graphs.

@ This equivalence relation is a maximal Ss-action.
@ In particular this implies that R~ (K) is a complete analytic set.
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Borel reductions

@ When dealing with equivalence relations there are two ways to define
Borel reductions.
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Borel reductions

@ When dealing with equivalence relations there are two ways to define
Borel reductions.

e let RCPxPand R C P x P be equivalence relations on Polish
spaces .
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Borel reductions

@ When dealing with equivalence relations there are two ways to define
Borel reductions.

e let RCPxPand R C P x P be equivalence relations on Polish
spaces .
e We say R is (Borel) reducible to R’ (R <% R’) if there exists a

Borel function f : P — P’ such that (x,y) € R if and only if
(f(x). f(y)) € R".
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Borel reductions

@ When dealing with equivalence relations there are two ways to define
Borel reductions.

e let RCPxPand R C P x P be equivalence relations on Polish
spaces .

e We say R is (Borel) reducible to R’ (R <% R’) if there exists a
Borel function f : P — P’ such that (x,y) € R if and only if
(f(x). f(y)) € R".

@ We say R is reducible to R’ as a set (R <p R’) if there exists a
Borel function f : P x P — P’ x P’ such that (x,y) € R if and only
if f(x,y) € R
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@ Question Does the complexity of R~ (K) change if we restrict to
minimal systems?
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@ Question Does the complexity of R~ (K) change if we restrict to
minimal systems?

@ Question (Gao) Is RM"(K) a Borel subset ?
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Minimal

@ Question Does the complexity of R~ (K) change if we restrict to
minimal systems?

@ Question (Gao) Is RM"(K) a Borel subset ?

@ A TDS is minimal if for every closed subset A C X such that
T(A) C A we have that A=Q or A= X.
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Minimal

@ Question Does the complexity of R~ (K) change if we restrict to
minimal systems?

@ Question (Gao) Is RM"(K) a Borel subset ?

@ A TDS is minimal if for every closed subset A C X such that
T(A) C A we have that A=Q or A= X.

o Why minimal systems?
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Minimal

e Cantor minimal systems have more structure than general Cantor
systems.
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Minimal

e Cantor minimal systems have more structure than general Cantor

systems.
@ For example Cantor minimal systems can be represented by

transformations on Bratteli diagrams.
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@ The complexity of pointed Cantor minimal systems is well understood.
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@ The complexity of pointed Cantor minimal systems is well understood.
e Wesay (X, T,x) is a pointed TDS if (X, T) isa TDS and x € X.
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@ The complexity of pointed Cantor minimal systems is well understood.
e Wesay (X, T,x) is a pointed TDS if (X, T) isa TDS and x € X.
e (Xi, T1,x1) and (Xz, T2, x2) are conjugated if there exists a

homeomorphism f : X; — X such that fo T; = T o f and
f(Xl) = X2.
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@ The complexity of pointed Cantor minimal systems is well understood.

e Wesay (X, T,x) is a pointed TDS if (X, T) isa TDS and x € X.

e (Xi, T1,x1) and (Xz, T2, x2) are conjugated if there exists a
homeomorphism f : X; — X such that fo T; = T o f and
f(Xl) = X2.

@ Theorem (Kaya '15) The equivalence relation generated by
conjugacy of pointed Cantor minimal systems is bi-reducible to =.

Furthermore =Tis reducible to RT"(K).
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@ The complexity of pointed Cantor minimal systems is well understood.
e Wesay (X, T,x) is a pointed TDS if (X, T) isa TDS and x € X.

e (Xi, T1,x1) and (Xz, T2, x2) are conjugated if there exists a
homeomorphism f : X; — X such that fo T; = T o f and
f(Xl) = X2.

@ Theorem (Kaya '15) The equivalence relation generated by
conjugacy of pointed Cantor minimal systems is bi-reducible to =.

Furthermore =Tis reducible to RT"(K).

o For {x,}, {yn} € RN, we write {x,} =" {y,} if
{xn:n €N} ={x,: n € N}.
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Equicontinuous systems

@ Equicontinuous minimal systems can be classified.
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Equicontinuous systems

@ Equicontinuous minimal systems can be classified.

e A TDS is equicontinuous if for every € > 0 there exist 6 > 0 such
that if d(x,y) < d then d(T"x, T"y) < e.
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Equicontinuous systems

@ Equicontinuous minimal systems can be classified.

e A TDS is equicontinuous if for every € > 0 there exist 6 > 0 such
that if d(x,y) < d then d(T"x, T"y) < e.

o Let C(X)={f:X — C:fis continuous}.
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Equicontinuous systems

@ Equicontinuous minimal systems can be classified.

e A TDS is equicontinuous if for every € > 0 there exist 6 > 0 such
that if d(x,y) < d then d(T"x, T"y) < e.

o Let C(X)={f:X — C:fis continuous}.

@ Given a TDS we define the topological Koopman operator
Ur:C(X)— C(X)as Ur(f)=foT.
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Equicontinuous systems

Equicontinuous minimal systems can be classified.

e A TDS is equicontinuous if for every € > 0 there exist 6 > 0 such
that if d(x,y) < d then d(T"x, T"y) < e.

Let C(X) ={f: X — C: f is continuous}.

Given a TDS we define the topological Koopman operator
Ur:C(X)— C(X)as Ur(f)=foT.

Theorem (Halmos - von Neumann) Two minimal equicontinuous
systems are conjugated if and only if the eigenvalues of topological
Koopman operator are the same.
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Discrete spectrum

e Theorem (Foreman - Louveau '00) Isomorphism of discrete spectrum
ergodic transformations is bi-reducible to =.
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Discrete spectrum

e Theorem (Foreman - Louveau '00) Isomorphism of discrete spectrum
ergodic transformations is bi-reducible to =.

@ This result uses the measurable version of the Halmos - von Neumann
the eigenvalues of the operator on L%(X, ).
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Cantor minimal systems

o Let RIM(X) ={(T1, T2) : (X, T1) = (X, T2) and (X, T1) is

minimal }.
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Cantor minimal systems

o Let Rgi"}(X) ={(T1, T2) : (X, T1) = (X, T2) and (X, Ty) is
minimal }.

@ Going back to the question about conjugacy on minimal systems.
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Cantor minimal systems

o Let RUN(X) ={(T1, T2) : (X, T1) = (X, T) and (X, T1) is
minimal }.

@ Going back to the question about conjugacy on minimal systems.

e Theorem (Deka et al) RM"(K) is a complete analytic subset (and
hence not Borel).
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Cantor minimal systems

o Let RUN(X) ={(T1, T2) : (X, T1) = (X, T) and (X, T1) is
minimal }.
@ Going back to the question about conjugacy on minimal systems.

Theorem (Deka et al) RT"(K) is a complete analytic subset (and
hence not Borel).

Corollary R™"(K) is bi-reducible to R~ (K) as a set.
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Cantor minimal systems

Let RZ"(X) = {(T1, T2) : (X, T1) = (X, T2) and (X, T1) is

minimal }.

Going back to the question about conjugacy on minimal systems.

Theorem (Deka et al) RT"(K) is a complete analytic subset (and
hence not Borel).

Corollary R™"(K) is bi-reducible to R~ (K) as a set.
We still do not know if RT"(K) is a maximal Se—action.
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Cantor minimal systems

o Let RUN(X)={(T1, T2): (X, T1) = (X, T2) and (X, T1) is
minimal }.

@ Going back to the question about conjugacy on minimal systems.

e Theorem (Deka et al) RM"(K) is a complete analytic subset (and
hence not Borel).

o Corollary R™"(K) is bi-reducible to R~ (K) as a set.

o We still do not know if RT"(K) is a maximal S, —action.

@ Another candidate is the isomorphism of countable abelian torsion
groups, which is complete analytic and determined by an Se-action,
but it is not maximal.
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Cantor minimal systems

o Let RUN(X) ={(T1, T2) : (X, T1) = (X, T) and (X, T1) is
minimal }.
@ Going back to the question about conjugacy on minimal systems.

e Theorem (Deka et al) RM"(K) is a complete analytic subset (and
hence not Borel).

o Corollary R™"(K) is bi-reducible to R~ (K) as a set.
o We still do not know if RT"(K) is a maximal S, —action.

@ Another candidate is the isomorphism of countable abelian torsion
groups, which is complete analytic and determined by an Se-action,
but it is not maximal.

@ Before mentioning some tools...
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Isomorphism of measure-preserving transformations

@ Theorem (Hjorth '01) The isomorphism equivalence relation for
measure preserving transformations is strictly more complicated than
isomorphism for countable graphs.
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Isomorphism of measure-preserving transformations

@ Theorem (Hjorth '01) The isomorphism equivalence relation for
measure preserving transformations is strictly more complicated than
isomorphism for countable graphs.

@ In particular this implies that isomorphism for MPT is more
complicated than conjugacy for Cantor systems.
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Isomorphism of measure-preserving transformations

@ Theorem (Hjorth '01) The isomorphism equivalence relation for
measure preserving transformations is strictly more complicated than
isomorphism for countable graphs.

@ In particular this implies that isomorphism for MPT is more
complicated than conjugacy for Cantor systems.

@ We say an invariant measure is ergodic if every invariant Borel subset
has null or complete measure.
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Isomorphism of measure-preserving transformations

@ Theorem (Hjorth '01) The isomorphism equivalence relation for
measure preserving transformations is strictly more complicated than
isomorphism for countable graphs.

@ In particular this implies that isomorphism for MPT is more
complicated than conjugacy for Cantor systems.

@ We say an invariant measure is ergodic if every invariant Borel subset
has null or complete measure.

@ Hjorth's proof uses nonergodic transformations in an essential way.
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Isomorphism of measure-preserving transformations

@ Theorem (Hjorth '01) The isomorphism equivalence relation for
measure preserving transformations is strictly more complicated than
isomorphism for countable graphs.

@ In particular this implies that isomorphism for MPT is more
complicated than conjugacy for Cantor systems.

@ We say an invariant measure is ergodic if every invariant Borel subset
has null or complete measure.

@ Hjorth's proof uses nonergodic transformations in an essential way.

e Theorem (Foreman, Rudolph, Weiss '11) The isomorphism

equivalence relation for ergodic measure preserving transformations is
complete analytic.
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@ One of the tools for the proof of FRW is constructing a Borel function

f : Trees — {minimal uniquely ergodic subshifts}

so that
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Trees

@ One of the tools for the proof of FRW is constructing a Borel function
f : Trees — {minimal uniquely ergodic subshifts}

so that

@ t € Trees is ill founded if and only if the unique invariant measure of
f(t)is
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Trees

@ One of the tools for the proof of FRW is constructing a Borel function

f : Trees — {minimal uniquely ergodic subshifts}

so that

@ t € Trees is ill founded if and only if the unique invariant measure of
f(t)is

@ isomorphic to the unique invariant measure of the subshift which is
the reverse of f(t) (using 0™ 1).
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Trees

@ One of the tools for the proof of FRW is constructing a Borel function
f : Trees — {minimal uniquely ergodic subshifts}

so that

@ t € Trees is ill founded if and only if the unique invariant measure of
f(t)is

@ isomorphic to the unique invariant measure of the subshift which is
the reverse of f(t) (using 0™ 1).

@ One uses the fact that the collection of ill-founded trees is a complete
analytic set.
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@ The FRW approach has flexibility; it has been used in different set
ups like Kakutani equivalence and K-systems (Gerber-Kunde).
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@ The FRW approach has flexibility; it has been used in different set
ups like Kakutani equivalence and K-systems (Gerber-Kunde).

@ Nonetheless, the technique has not been used for topological
dynamics.
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@ The FRW approach has flexibility; it has been used in different set
ups like Kakutani equivalence and K-systems (Gerber-Kunde).

@ Nonetheless, the technique has not been used for topological
dynamics.

@ Take an ill founded tree t. In general f(t) is not (top.) conjugated
the inverse of f(t).
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@ The FRW approach has flexibility; it has been used in different set
ups like Kakutani equivalence and K-systems (Gerber-Kunde).

@ Nonetheless, the technique has not been used for topological
dynamics.

@ Take an ill founded tree t. In general f(t) is not (top.) conjugated
the inverse of f(t).

o If one was able to "fix" this then we would conclude that the
conjugacy relation for subshifts is not Borel.
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@ The FRW approach has flexibility; it has been used in different set
ups like Kakutani equivalence and K-systems (Gerber-Kunde).

@ Nonetheless, the technique has not been used for topological
dynamics.

@ Take an ill founded tree t. In general f(t) is not (top.) conjugated
the inverse of f(t).

@ If one was able to "fix" this then we would conclude that the
conjugacy relation for subshifts is not Borel.

@ Actually the conjugacy between any subshifts is given by
(finite-window) sliding-blockcodes, so the relation of conjugacy of
subshifts is countable and hence Borel. Hence, this approach is
impossible
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Cantor subshifts

@ We add a new dimension to the construction.
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Cantor subshifts

@ We add a new dimension to the construction.

o Let K7(K) = {X C KZ: X is closed and shift invariant} the space
of Cantor subshifts.
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Cantor subshifts

@ We add a new dimension to the construction.

o Let K7(K) = {X C KZ: X is closed and shift invariant} the space
of Cantor subshifts.

@ We equipp this space with the Vietoris topology (Hausdorff metric).
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Cantor subshifts

@ We add a new dimension to the construction.

o Let K7(K) = {X C KZ: X is closed and shift invariant} the space
of Cantor subshifts.

@ We equipp this space with the Vietoris topology (Hausdorff metric).

@ We construct a Borel function

f : Trees — {minimal Cantor subshifts}
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Cantor subshifts

@ We add a new dimension to the construction.

o Let K7(K) = {X C KZ: X is closed and shift invariant} the space
of Cantor subshifts.

@ We equipp this space with the Vietoris topology (Hausdorff metric).

@ We construct a Borel function
f : Trees — {minimal Cantor subshifts}

@ such that t € Trees is ill founded if and only if (f(t), o) is conjugated
to (F(t), o).
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Cantor subshifts

@ We add a new dimension to the construction.

o Let K7(K) = {X C KZ: X is closed and shift invariant} the space
of Cantor subshifts.

We equipp this space with the Vietoris topology (Hausdorff metric).

@ We construct a Borel function
f : Trees — {minimal Cantor subshifts}

@ such that t € Trees is ill founded if and only if (f(t), o) is conjugated
to (F(t), o).

We construct the Cantor subshifts step by step by enumerating the
tree.
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Cantor subshifts

We add a new dimension to the construction.

o Let K7(K) = {X C KZ: X is closed and shift invariant} the space
of Cantor subshifts.

@ We equipp this space with the Vietoris topology (Hausdorff metric).

@ We construct a Borel function
f : Trees — {minimal Cantor subshifts}

@ such that t € Trees is ill founded if and only if (f(t), o) is conjugated
to (F(t), o).

@ We construct the Cantor subshifts step by step by enumerating the
tree.

@ At each step n we set the language of length /(n) of the first m levels
of the Cantor subshift (where m is the depth of the vertex n).
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e Finally we prove that the conjugacy relation of (perfect) Cantor
minimal subshifts is bi-reducible to the conjugacy relation of Cantor
minimal systems.
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e Finally we prove that the conjugacy relation of (perfect) Cantor
minimal subshifts is bi-reducible to the conjugacy relation of Cantor
minimal systems.

@ Every Cantor system is conjugated to a Cantor subshift.
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e Finally we prove that the conjugacy relation of (perfect) Cantor
minimal subshifts is bi-reducible to the conjugacy relation of Cantor
minimal systems.

@ Every Cantor system is conjugated to a Cantor subshift.

@ Not every Cantor subshift is a Cantor system, but every Cantor
subshift without isolated points is a Cantor system.
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Flip conjugacy

@ Question (Gao) Is the relation given by flip-conjugacy of Cantor
minimal systems Borel?
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Flip conjugacy

@ Question (Gao) Is the relation given by flip-conjugacy of Cantor
minimal systems Borel?

e Wesay (X, T) and (X3, T2) are flip-conjugated if
(X, T) =~ (Xo, T2) or (X, T) = (X, T, ).
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Flip conjugacy

@ Question (Gao) Is the relation given by flip-conjugacy of Cantor
minimal systems Borel?

e Wesay (X, T) and (X3, T2) are flip-conjugated if
(X, T) =~ (Xo, T2) or (X, T) = (X, T, ).

@ With our previous approach we cannot obtain the result for flip
conjugacy because a system is always flip-conjugated to its inverse.
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@ What is needed is a Borel reduction
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@ What is needed is a Borel reduction

°
f : Trees — {minimal Cantor subshifts}?

with £(t) = (f(t), (1))
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@ What is needed is a Borel reduction

°
f : Trees — {minimal Cantor subshifts}?

with £(t) = (f(t), (1))

@ where:
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@ What is needed is a Borel reduction

°
f : Trees — {minimal Cantor subshifts}?

with £(t) = (f(t), (1))
@ where:

e (fi(t), o) is never conjugated to (f(t), o), and
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What is needed is a Borel reduction

f : Trees — {minimal Cantor subshifts}?

with f(t) = ((1), 22(t))

where:

(fi(t), o) is never conjugated to (f(t), o), and

t € Trees is ill founded if and only if (f(t), o) is conjugated to

((t),0).
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What is needed is a Borel reduction

f : Trees — {minimal Cantor subshifts}?

with f(t) = (f(z), ~2(t))

where:

(fi(t), o) is never conjugated to (f(t), o), and

t € Trees is ill founded if and only if (f(t), o) is conjugated to
((t),0).

Theorem (Deka et al) The flip conjugacy relation for Cantor
minimal systems is complete analytic.
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e A group G is simple if the only normal subgroups are {id} and G.
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e A group G is simple if the only normal subgroups are {id} and G.

@ Finite simple groups can be classified:
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e A group G is simple if the only normal subgroups are {id} and G.

@ Finite simple groups can be classified:

Theorem — Every finite simple group is isomorphic to one of the following groups:
« a member of one of three infinite classes of such, namely:
« the cyclic groups of prime order,
« the alternating groups of degree at least 5,
« the groups of Lie typelote 1]
« one of 26 groups called the "sporadic groups"
« the Tits group (which is sometimes considered a 27th sporadic group).[nete 1]
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e A group G is simple if the only normal subgroups are {id} and G.

@ Finite simple groups can be classified:

Theorem — Every finite simple group is isomorphic to one of the following groups:
« a member of one of three infinite classes of such, namely:

« the cyclic groups of prime order,
« the alternating groups of degree at least 5,
« the groups of Lie typelote 1]
« one of 26 groups called the "sporadic groups"
« the Tits group (which is sometimes considered a 27th sporadic group).[nete 1]

e Theorem (Robert '23) The relation obtained from isomorphisms of
locally finite simple groups arises from a maximal Se-action.
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o We define the topological full group of a TDS (X, T), [[T]] as the
subgroup of points g € Homeo(X) for which there exists a
continuous function f, : X — Z such that g(x) = T%)(x).
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o We define the topological full group of a TDS (X, T), [[T]] as the
subgroup of points g € Homeo(X) for which there exists a
continuous function f, : X — Z such that g(x) = T%)(x).

e Let (K, T) be a Cantor minimal system.
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o We define the topological full group of a TDS (X, T), [[T]] as the
subgroup of points g € Homeo(X) for which there exists a
continuous function f, : X — Z such that g(x) = T%)(x).

e Let (K, T) be a Cantor minimal system.
e [[T]] is countable.
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o We define the topological full group of a TDS (X, T), [[T]] as the
subgroup of points g € Homeo(X) for which there exists a
continuous function f, : X — Z such that g(x) = T%)(x).

e Let (K, T) be a Cantor minimal system.
e [[T]] is countable.
@ [[T]] amenable (Juschenko-Monod '12).
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We define the topological full group of a TDS (X, T), [[T]] as the
subgroup of points g € Homeo(X) for which there exists a
continuous function f, : X — Z such that g(x) = T%)(x).

Let (K, T) be a Cantor minimal system.

(7]

[[T]] amenable (Juschenko-Monod '12).
T]

[[T]], the commutator of [[T]] is simple (Matui '06,
Bezuglyi-Medynets '07)

] is countable.
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Classification

o Let (K, T) and (K, Ty) be Cantor minimal systems.
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Classification

o Let (K, T) and (K, Ty) be Cantor minimal systems.

e Theorem (Giordano-Putnam-Skau '99) (K, T1) ~gjp (K, T2) if and
only if [[T1]] is isomorphic to [[T2]]
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Classification

e Let (K, T) and (K, T2) be Cantor minimal systems.

e Theorem (Giordano-Putnam-Skau '99) (K, T1) ~gjp (K, T2) if and
only if [[T1]] is isomorphic to [[T2]]

e Theorem (Bezuglyi-Medynets '07) (K, T1) ~#ip, (K, T2) if and only
if [[T1]])’ is isomorphic to [[T2]]" .
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Proposition

@ By construction a Borel reduction to the commutator of the full
group we obtain the following result.
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@ By construction a Borel reduction to the commutator of the full
group we obtain the following result.

e Proposition (Deka et al) The relation obtain by flip-cojugacy of
Cantor minimal systems reduces to the relation of isomorphism of
countable simple amenable groups.
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